Shenoy, Okay. V., Sahani, M. & Churchland, M. M. Cortical management of arm actions: a dynamical techniques perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).
Inagaki, H. Okay. et al. A midbrain–thalamus–cortex circuit reorganizes cortical dynamics to provoke motion. Cell 185, 1065–1081 (2022).
Dacre, J. et al. A cerebellar–thalamocortical pathway drives behavioral context-dependent motion initiation. Neuron 109, 2326–2338 (2021).
Guo, Z. V. et al. Upkeep of persistent exercise in a frontal thalamocortical loop. Nature 545, 181–186 (2017).
Gaidica, M., Hurst, A., Cyr, C. & Leventhal, D. Okay. Distinct populations of motor thalamic neurons encode motion initiation, motion choice, and motion vigor. J. Neurosci. 38, 6563–6573 (2018).
Sauerbrei, B. A. et al. Cortical sample era throughout dexterous motion is input-driven. Nature 577, 386–391 (2020).
Logiaco, L., Abbott, L. F. & Escola, S. Thalamic management of cortical dynamics in a mannequin of versatile motor sequencing. Cell Rep. 35, 109090 (2021).
Tanji, J. Sequential group of a number of actions: involvement of cortical motor areas. Annu. Rev. Neurosci. 24, 631–651 (2001).
Glaze, C. M. & Troyer, T. W. Temporal construction in zebra finch tune: implications for motor coding. J. Neurosci. 26, 991–1005 (2006).
Cynx, J. Experimental dedication of a unit of tune manufacturing within the zebra finch (Taeniopygia guttata). J. Comp. Psychol. 104, 3–10 (1990).
Okubo, T. S., Mackevicius, E. L., Payne, H. L., Lynch, G. F. & Payment, M. S. Progress and splitting of neural sequences in songbird vocal growth. Nature 528, 352–357 (2015).
Coleman, M. J. & Vu, E. T. Restoration of impaired songs following unilateral however not bilateral lesions of nucleus uvaeformis of grownup zebra finches. J. Neurobiol. 63, 70–89 (2005).
Coleman, M. J., Roy, A., Wild, J. M. & Mooney, R. Thalamic gating of auditory responses in telencephalic tune management nuclei. J. Neurosci. 27, 10024–10036 (2007).
Danish, H. H., Aronov, D. & Payment, M. S. Rhythmic syllable-related exercise in a songbird motor thalamic nucleus essential for realized vocalizations. PLoS ONE 12, e0169568 (2017).
Williams, H. & Vicario, D. S. Temporal patterning of tune manufacturing: participation of nucleus uvaeformis of the thalamus. J. Neurobiol. 24, 903–912 (1993).
Elmaleh, M., Kranz, D., Asensio, A. C., Moll, F. W. & Lengthy, M. A. Sleep replay reveals premotor circuit construction for a talented habits. Neuron 109, 3851–3861 (2021).
Nottebohm, F., Kelley, D. B. & Paton, J. A. Connections of vocal management nuclei within the canary telencephalon. J. Comp. Neurol. 207, 344–357 (1982).
Akutagawa, E. & Konishi, M. New mind pathways discovered within the vocal management system of a songbird. J. Comp. Neurol. 518, 3086–3100 (2010).
Mooney, R. & Prather, J. F. The HVC microcircuit: the synaptic foundation for interactions between tune motor and vocal plasticity pathways. J. Neurosci. 25, 1952–1964 (2005).
Egger, R. et al. Native axonal conduction shapes the spatiotemporal properties of neural sequences. Cell 183, 537–548 (2020).
Kornfeld, J. et al. EM connectomics reveals axonal goal variation in a sequence-generating community. eLife 6, e24364 (2017).
Lengthy, M. A. & Payment, M. S. Utilizing temperature to analyse temporal dynamics within the songbird motor pathway. Nature 456, 189–194 (2008).
Picardo, M. A. et al. Inhabitants-level illustration of a temporal sequence underlying tune manufacturing within the zebra finch. Neuron 90, 866–876 (2016).
Hahnloser, R. H., Kozhevnikov, A. A. & Payment, M. S. An ultra-sparse code underlies the era of neural sequences in a songbird. Nature 419, 65–70 (2002).
Kozhevnikov, A. A. & Payment, M. S. Singing-related exercise of recognized HVC neurons within the zebra finch. J Neurophysiol. 97, 4271–4283 (2007).
Hamaguchi, Okay., Tanaka, M. & Mooney, R. A distributed recurrent community contributes to temporally exact vocalizations. Neuron 91, 680–693 (2016).
Andalman, A. S., Foerster, J. N. & Payment, M. S. Management of vocal and respiratory patterns in birdsong: dissection of forebrain and brainstem mechanisms utilizing temperature. PLoS ONE 6, e25461 (2011).
Schmidt, M. F. Sample of interhemispheric synchronization in HVc throughout singing correlates with key transitions within the tune sample. J. Neurophysiol. 90, 3931–3949 (2003).
Valverde, S. et al. Deep mind stimulation-guided optogenetic rescue of parkinsonian signs. Nat. Commun. 11, 2388 (2020).
Lymer, J., Prescott, I. A. & Levy, R. Microstimulation-induced inhibition of thalamic reticular nucleus in non-human primates. Exp. Mind Res. 237, 1511–1520 (2019).
Arfin, S. Okay., Lengthy, M. A., Payment, M. S. & Sarpeshkar, R. Wi-fi neural stimulation in freely behaving small animals. J. Neurophysiol. 102, 598–605 (2009).
Vu, E. T., Mazurek, M. E. & Kuo, Y. C. Identification of a forebrain motor programming community for the realized tune of zebra finches. J. Neurosci. 14, 6924–6934 (1994).
Ashmore, R. C., Wild, J. M. & Schmidt, M. F. Brainstem and forebrain contributions to the era of realized motor behaviors for tune. J. Neurosci. 25, 8543–8554 (2005).
Roberts, T. F. et al. Identification of a motor-to-auditory pathway vital for vocal studying. Nat. Neurosci. 20, 978–986 (2017).
Payment, M. S., Kozhevnikov, A. A. & Hahnloser, R. H. Neural mechanisms of vocal sequence era within the songbird. Ann. NY Acad. Sci. 1016, 153–170 (2004).
Scharff, C., Kirn, J. R., Grossman, M., Macklis, J. D. & Nottebohm, F. Focused neuronal dying impacts neuronal substitute and vocal habits in grownup songbirds. Neuron 25, 481–492 (2000).
Zhao, W., Garcia-Oscos, F., Dinh, D. & Roberts, T. F. Inception of recollections that information vocal studying within the songbird. Science 366, 83–89 (2019).
Cardin, J. A., Raksin, J. N. & Schmidt, M. F. Sensorimotor nucleus NIf is critical for auditory processing however not vocal motor output within the avian tune system. J. Neurophysiol. 93, 2157–2166 (2005).
Otchy, T. M. et al. Acute off-target results of neural circuit manipulations. Nature 528, 358–363 (2015).
Vyssotski, A. L., Stepien, A. E., Keller, G. B. & Hahnloser, R. H. A neural code that’s isometric to vocal output and correlates with its sensory penalties. PLoS Biol. 14, e2000317 (2016).
Kosche, G., Vallentin, D. & Lengthy, M. A. Interaction of inhibition and excitation shapes a premotor neural sequence. J. Neurosci. 35, 1217–1227 (2015).
Cannon, J., Kopell, N., Gardner, T. & Markowitz, J. Neural sequence era utilizing spatiotemporal patterns of inhibition. PLoS Comput. Biol. 11, e1004581 (2015).
Miri, A. et al. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat. Neurosci. 14, 1150–1159 (2011).
Reinke, H. & Wild, J. M. Identification and connections of inspiratory premotor neurons in songbirds and budgerigar. J. Comp. Neurol. 391, 147–163 (1998).
Schmidt, M. F. & Wild, J. M. The respiratory–vocal system of songbirds: anatomy, physiology, and neural management. Prog. Mind Res. 212, 297–335 (2014).
Johnson, M. D. & Ojemann, G. A. The function of the human thalamus in language and reminiscence: proof from electrophysiological research. Mind Cogn. 42, 218–230 (2000).
Jurgens, U. Neural pathways underlying vocal management. Neurosci. Biobehav. Rev. 26, 235–258 (2002).
Pattinson, Okay. T. et al. Dedication of the human brainstem respiratory management community and its cortical connections in vivo utilizing useful and structural imaging. Neuroimage 44, 295–305 (2009).
Wild, J. M. Visible and somatosensory inputs to the avian tune system by way of nucleus uvaeformis (Uva) and a comparability with the projections of an analogous thalamic nucleus in a nonsongbird, Columba livia. J. Comp. Neurol. 349, 512–535 (1994).
Throughout, D. N. et al. Quick retrograde entry to projection neuron circuits underlying vocal studying in songbirds. Cell Rep. 33, 108364 (2020).
Pologruto, T. A., Sabatini, B. L. & Svoboda, Okay. ScanImage: versatile software program for working laser scanning microscopes. Biomed. Eng. On-line 2, 13 (2003).
Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Practical imaging of hippocampal place cells at mobile decision throughout digital navigation. Nat. Neurosci. 13, 1433–1440 (2010).
Kollmorgen, S., Hahnloser, R. H. R. & Mante, V. Nearest neighbours reveal quick and sluggish parts of motor studying. Nature 577, 526–530 (2020).
Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Kenneth, D. H. Kilosort: realtime spike-sorting for extracellular electrophysiology with a whole lot of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).
Rossant, C. et al. Spike sorting for giant, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Environment friendly subpixel picture registration algorithms. Decide. Lett. 33, 156–158 (2008).
Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: a web based algorithm for piecewise inflexible movement correction of calcium imaging knowledge. J. Neurosci. Strategies 291, 83–94 (2017).
Katlowitz, Okay. A., Picardo, M. A. & Lengthy, M. A. Secure sequential exercise underlying the upkeep of a exactly executed expert habits. Neuron 98, 1133–1140 (2018).
Supply hyperlink